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Abstract. Hidden Markov models (HMMs) are effective tools to de-
tect series of statistically homogeneous structures, but they are not well
suited to analyse complex structures such as DNA sequences. Numerous
methodological difficulties are encountered when using HMMs to model
non geometric distribution such as exons length, to segregate genes from
transposons or retroviruses, or to determine the isochore classes of genes.
The aim of this paper is to suggest new tools for the exploration of
genome data. We show that HMMs can be used to analyse complex gene
structures with bell-shaped length distribution by introducing macros-
states. Our HMMs methods take into account many biological properties
and were developped to model the isochore organisation of the chim-
panzee genome which is considered as a fondamental level of genome
organisation. A clear isochore structure in the chimpanzee genome, cor-
related with the gene density and guanine-cytosine content, has been
identified.
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1 Introduction

The chimpanzee is an excellent model organism in biomedical research due to
the similarities between many of its physiological processes and those of hu-
man. The availability of the chimpanzee genome sequence has already largely
influenced the research in many fields, and more profound impact is certainly to
follow. The sequencing of the complete chimpanzee genome led to the knowledge
of a sequence of 4.4 billion pairs of nucleotides. Such amounts of data make it
impossible to analyse patterns or to provide a biological interpretation analysis
unless one relies on automatic data-processing methods. For twenty years, math-
ematical and computational models have been widely developed in this setting.
Numerous methodological efforts have been devoted to multicellular eukaryotes
since a large proportion of their genome has no known function. For example,
only 1 to 3% of the chimpanzee genome is known to code for proteins. Another
difficulty is that the statistical characteristics of the coding region vary dramat-
ically from one specie to the other, and even from one region in a given genome
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to the other. For example, vertebrate isochores [1], [2] exhibit such a variability
in relation to their guanine-cytosine (G + C) frequencies. Thus it is necessary
to use different models for different regions if one seeks to detect patterns in
genomes.
One way of modelling genomes uses hidden Markov Models (HMMs) [3], [4],
[5]. To each type of genomic region (exons, introns, etc.), one associates a state
of the hidden process, and the distribution of the stay in a given state, that
is, of the length of a region, is geometric. While this is indeed an acceptable
constraint as far as intergenic regions and introns are concerned, the empirical
distributions of the lengths of exons are clearly bell-shaped [6], [7], [8], hence
they cannot be represented by geometrical distributions. Semi-Markov models
are one option to overcome this problem [6]. Although these models are widely
used, they are very versatile, since they allow to adjust the distribution of the
duration of the stay in a given state directly to the empirical distribution. The
trade off is a strong increase in the complexity of most algorithms implied by
the estimation and the use of these models. For example, the complexities of
the main algorithms (forward-backward and Viterbi) are quadratic in the worst
case with respect to the length of the sequence for hidden semi-Markov chains
and linear for HMMs [6], [9], [10]. This may limit their range of application as
far as the analysis of sequences with long homogeneous regions is concerned.
Another difficulty is the multiplication of the number of parameters that are
needed to describe the empirical distributions of the durations of the states, and
which must be estimated, in addition to usual HMM parameters [9]. Thus the
estimation problem is more difficult for these variable duration HMMs than for
standard HMMs [9]. In other words, semi-Markov models are efficient tools to
detect protein coding genes, but they are much more complex than HMMs.
In this paper, HMMs were used to detect isochores which were originally iden-
tified as a result of gradient density analysis of fragmented genomes [11]. Mam-
malian genomes are a mosaic of regions (DNA segments on average more than
300 kb in length) with differing, homogeneous G + C contents. High, Medium
and Low-density genomic segments are known as H, M and L isochores in or-
der of decreasing G + C content respectively. The isochore has been classified
as a ”fundamental level of genome organisation” [12] and this concept has in-
creased our appreciation of the complexity and variability of the composition of
eukaryotic genomes [13]. Existing isochore prediction methods only use the over-
all base composition of the DNA sequence ([14], [15], [16], [17], [18]). The aim of
this paper is to suggests a new approach using HMMs and allowing to take into
account many biological properties, such as G + C content, gene density, length
of the different regions, the reading frame of exons. We suggest to use HMM
for modelling the exon length distribution by sum of geometric laws. To do this
a state representing a region is replaced by a juxtaposition of states with the
same emission probabilities. This juxtaposition of states is called macro-states.
Macro-state HMMs models were used for complete genome analysis. Therefore, a
method based on a hidden Markov model, which makes it possible to detect the
isochore structure has been developped and tested on the chimpanzee genome.
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2 Materials

Gene sequences were extracted from Ensembl for the chimpanzee genome. This
procedure yielded a set of 22524 genes. The statistical characteristics of the cod-
ing and noncoding regions of vertebrates differ dramatically between the different
isochore classes [13]. Many important biological properties have been associated
with the isochore structure of genomes. In particular, the density of genes has
been shown to be higher in H than in L isochores [20]. Genes in H isochores are
more compact, with a smaller proportion of intronic sequences, and they code
for shorter proteins than the genes in L isochores [16]. The amino-acid content of
proteins is also constrained by the isochore class: amino acids encoded by G+C
rich codons (alanine, arginine.) being more frequent in H isochores [21] and [22].
Moreover, the insertion process of repeated elements depends on the isochore
regions. SINE (short-interspersed nuclear element) sequences, and particularly
Alu sequences, tend to be found in H isochores, whereas LINE (long-interspersed
nuclear element) sequences are preferentially found in L isochores [23]. Thus, we
took into account the isochore organisation of the chimpanzee genome. Three
classes were defined and based on the G + C frequencies at the third codon
position (G + C3). The limits were set so that the three classes contained ap-
proximately the same number of genes. This yielded classes H=[100%, 70%],
M=]58%,70%[ and L=[0%,58%], which were used to build a training set. These
classes were the same compared with those used by other authors [20], [24] in the
human genome. Each class H, L and M , was randomly divided into two equal
parts, a training set and a test set. The training sets were used to model the
length distributions of the exons and the introns, and to analyse the structure
of genes. To test the model, data on all chimpanzee chromosomes were retrieved
from ENSEMBL.

3 Method

3.1 Estimation of the HMM parameters

Estimation of emission probabilities

The DNA sequence consists of a succession of different regions, such as gene
and intergenic regions. A gene is a succession of coding (exon) and non-coding
(intron) region. In this study, HMMs are used to discriminate between these
different types of regions. Exons consist of a succession of codons, and each of
the three possible positions in a codon (0, 1, 2) has specific statistical properties.
Thus, exons were divided into three states [25], [26].
HMMs take into account the dependency between a base and its n preceding
neighbours (n defined the order of the model). For our study, n was taken to
be equal to 5, as in the studies of Borodovsky [24] and Burge [25]. The emis-
sion probabilities of the HMM were therefore estimated from the frequencies of
6-letter words in the different regions (intron, initial exon, internal exons and
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terminal exon) that made up the training set.

Estimation of the structure of the macro-states

We suggest to use sums of a variable number of geometric laws with equal or
different parameters in order to model the bell-shaped empirical length distri-
butions of the exons. Thus a ”biological state” is represented by a HMM and
not by a single Markov state. The emission of probabilities of every state in
this HMM are the same. A key property of this macro-state approach is that
the conditional independence assumptions within the process are preserved with
respect to HMMs. Hence, the HMM algorithms used to estimate the parameters
and compute the most likely state sequences still apply [10].
The length distribution of the exons and introns was estimated from the train-
ing set (data set sequences are named x1...xn). Each xi was considered to be
the realization of an independent variable of a given law. We have tested the
following laws:

1. the sum of m geometric laws of same parameter Θ (i.e. a binomial negative
law):

P [X = k] = Cm−1
k−1 ×Θm × (1−Θ)k−m , (1)

2. the sum of two geometric laws with different parameters Θ1 > Θ2:

P [X = k] = Θ1 ×Θ2
(1−Θ2)k−1 − (1−Θ1)k−1

Θ1 −Θ2,
, (2)

3. the sum of three geometric laws with different parameters Θ1 < Θ2 < Θ3:

P [X = k] =
Θ1 ×Θ2 ×Θ3

Θ2 −Θ3
×{

(1−Θ1)k−1 − (1−Θ3)k−1

Θ3 −Θ1
− (1−Θ2)k−1 − (1−Θ3)k−1

Θ3 −Θ2

}
. (3)

We define Gn(D1, ..., Dn) as the distribution of the sum of n random variables
of geometric distributions, each with expectation Di and parameter Θi = 1/Di.
Thus the expectation of Gn(D1, ..., Dn) is D1 + ...+Dn. When Di = D for every
i, this is called a negative binomial distribution with parameters (n, 1/D), which
we denote Gn(1/Θ). Finally Gn(D) is a geometric distribution with expectation
D and parameter Θ = 1/D, which we write G(D).
To estimate the parameters of the different laws, we minimised the Kolmogorov
Smirnov distance for each law. The law which fits best with the empirical dis-
tribution is the law with the smallest Kolmogorov-Smirnov distance.

DKS = supx|F (x)−G(x)| , (4)

where DKS is the Kolmogrorov-Smirnov distance, F is the theorical density dis-
tribution, G is the empirical density distribution. However, the classical Newton
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or gradient algorithm cannot minimise the Kolmogorov-Smirnov distance, since
this distance cannot be differentiable. For this reason, we have discretised the
parameter space with a step of 10−5. Parameters estimations were not based on
the maximum likelihood, which would have matched the end of the exon length
distribution while neglecting many small exons (Figure 1a). The definition of the
maximum likelihood method is as follow: let x be a discrete variable with prob-
ability P [x|Θ1...Θk] (where Θ1...Θk are k unknown constant parameters which
need to be estimated) obtained by an experiment which result in N independant
observations, x1, ..., xN . Then the likelihood fonction is given by:

L(x1, ..., xN |Θ1...Θk) =
∏

i=1...N

P [xi|Θ1...Θk] . (5)

The logarithm function is:

∧ = ln(L(x1, ..., xN |Θ1...Θk)) =
∑

i=1...N

P [xi|Θ1...Θk] . (6)

The maximum likelihood estimators Θ1...Θk are obtained by maximizing L or ∧.
Indeed, for a geometrical law or a convolution of geometrical laws, the parameter
Θ is estimated by the reverse of the mean (E[X] = 1/Θ) using the maximum like-
lihood method. The extreme values thus tend to stretch the distribution towards
the large ones. We therefore have preferred to use the Kolmogorov-Smirnov dis-
tance in order to obtain a better modelling of the chimpanzee gene. Moreover,
in order to provide simple but efficient models, equal transitions between states
of a macro-state were used when it was possible.
Thus, a region is represented by a hidden state of the HMM. If the length distri-
bution of a region is fitted by a sum of geometric laws, the state representing the
region is replaced by a juxtaposition of states with the same emission probabili-
ties, thus leading to macros-states (Figure 2). The state duration is characterised
by the parameters of the sum of these geometric laws. Various studies [6], [27]
have shown that the length distribution of the exons depend on their position in
the gene. All exon types were taken into account: initial coding exons, internal
exons, terminal exons and single-exon genes.

3.2 Modelling of isochores organisation

To characterize the three isochore regions (H, L and M) along the chimpanzee
genome, three HMM models (H, L and M) were adjusted using the training sets,
and then compared on all chimpanzee chromosomes. We divided the DNA of
each chimpanzee chromosome into window of 100-kb. Two successive window
overlapped by half their length. For each window and for each model (H, L and
M), the probability P [m|S] was computed as follows:

P (m | S) =
P (S | m)P (m)∑

m′∈{H,M,L} P (S | m′)P (m′)
, (7)
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(a) (b)

Fig. 1. (a) The histogram shows the empirical distribution of the length of the initial
exons in a multi-exons gene. The blue curve shows the theoretical distribution obtained
from the Kolmogorov-Smirnov distance. The red curve characterises the binomial dis-
tribution, obtained by the maximum likelihood method. (b) The histogram shows the
empirical distribution of the length of the internal exons. The blue curve shows the
theoretical distribution obtained from the Kolmogorov-Smirnov distance.

Fig. 2. The macro-state initial exon is composed of two smaller macro-states modelling
the distribution of the length G2(1/p, 1/q) of initial exons in H isochore. Black arrows
show the transition inside the macro-state. Grey and white arrows show respectively
the different input and output of the macro-state.
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m is H, L or M, and S the window that is being tested, P (S|m) is computed
by the forward algorithm, and P (m) is estimated by the frequency of genes ac-
cording to their G + C3 content (due to our definition of G + C3 limits we get
P (H) ≈ P (M) ≈ P (L) ≈ 1/3, and so our Bayesian approach is numerically very
close to a maximum likelihood approach). The computations were realized with
the package SARMENT [28]. To be consistent with the preceding definition, we
assumed an isochore to be a region consisting of at least 5 consecutive windows
associated by the method with the same isochore class. This ensured that all
estimated isochore lengths were greater than 300 kb, but meant that some win-
dows can be unassociated to an isochore class.
Several tests were performed in order to check the coherence of isochore predic-
tion: (i) the distribution of isochores was plotted with the distribution of the
gene density, and the GC content along the chromosome, (ii) the segmentation
allows to define the isochore class of each window along the chimpanzee genome.
The isochore repartition of these windows has been compared with a random
repartition of these windows. One thousand simulations have been realized. (iii)
Furthermore, the ratio of coding regions has been compared between the iso-
chores H and L predicted by our method.

4 Results

4.1 Estimations of the HMMs parameters

Sums of geometric laws with equal or different parameters were used in order
to model the bell-shaped empirical length distributions of exons (Figure 2). The
length of an exon depends on its position within the gene. Initial and terminal
exons tend to be longer than internal exons (Table 1). The length of introns
displays also a noticeable positional variability. The distributions of the lengths
of internal and terminal introns are relatively similar. However, internal and
terminal introns are both smaller compared with initial introns (Table 1). The
lengths of introns depend on their G+C content. Table 1 shows that the G+C
frequency at the third codon position is negatively correlated with the length
of the introns, i.e., high frequencies correspond to short introns, and vice versa.
The length of the exons displays clearly a bell-shaped pattern (Figure 1b), for
the three G + C classes. The minimisation of the Kolmogorov-Smirnov distance
yields a good fit with the empirical distribution of the length of the exons (Fig-
ure 1 and Table 2). Therefore, the Kolmogorov-Smirnov distance was chosen
to model their length distribution by sum of geometric laws and to estimate
the parameters of these laws (see Method for a comparison with the maximum
likelihood approach).
We show here only the results for the modelling of the distributions of the lengths
in the H class. However, the distributions of the lengths in the classes M and
L were modelled by sums of geometric laws. The estimated distributions are
G2(52.6, 106.4) for initial exons (Figure 1), G2(58.8, 108.7) for terminal exons,
G5(27.4) for internal exons, G3(415.2) for intronless genes. The geometric dis-
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Table 1. Length of the exons and of the introns according to their position in the gene
and according to the G + C frequency at third codon position in the gene.

Length (bp) Length (bp) Length (bp)
Position in class H in class M in class L

in the gene mean median mean median mean meadian

initial coding exon 184 123 167 114 162 112
internal exon 140 101 138 108 139 107
terminal exon 193 138 201 130 202 127
initial intron 2746 2318 3864 3274 4474 4227

internal intron 1192 1045 1446 1437 2841 2322
terminal intron 1247 1012 1534 1479 2691 2136

Table 2. Parameters estimation of different laws obtained for initial exons of class H
minimising the Kolmogorov-Smirnov distance.

Lois Paramètres p Distance K-S

G2(Θ) 0.0126 0.05761
G3(Θ) 0.0197 0.08782
G4(Θ) 0.0226 0.11243

G(Θ1, Θ2) 0.019 - 0.0094 0.05023

tribution for initial introns was G(1923.1). Other types of introns were also
modelled by a geometrical distribution.

4.2 Modelling of isochore organisation

The quality of discrimination between isochore classes for each windows was mea-
sured by maxH,L,M (P (m/S)). For each of the 59075 windows in the chimpanzee
genome the maximum value was greater than 0.75, leading to a very clear asso-
ciation between each window and a unique isochore class. A second important
criterion was the isochore length, since the method imposes a minimum length
of 300 kb, resulting in some unaffected windows. In the chimpanzee genome, un-
allocated windows represent only 4.75% of the total number of windows. These
windows were not considered to constitute an isochore. Along the chimpanzee
genome, the distributions of these unallocated windows was random. Figure 3
shows the chimpanzee genome segmentation obtained by the method described
in this paper. Figure 3 is available online at http://melodelima.chez-alice.
fr/chimpanzee_isochores/chimpanzee_isochore.html.
All the tests performed to verufy our predictions are isochores, were satisfactory.
Along the chimpanzee genomes the isochore repartition of windows obtained has
been compared with 1000 random repartitions of the same windows. A signifi-
cant difference between our predictions and random repartitions was observed
(respectively the p-value of the χ2 test were equal to 5.10−8). Furthermore, the
percentage of coding region in each isochore class was coherent with the obser-
vation obtained along mammals genomes ([20]). The coding regions represent
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4.2% of the isochores H and only 1.1% of the isochores L. The p-value of the
Wilcoxon test was significant (p= 1.10−4).
The segmentation of the chimpanzee genome correlates well with the G + C
content. The mean G + C contents were 0.48 (σ = 0.03), 0.42 (σ = 0.02) and
0.38 (σ = 0.02) respectively for the H, M and L isochore classes as defined by
our HMM method. The Kruskal-Wallis non-parametric test was significant (p-
value < 10−5). The length of the isochores detected by their G + C content is
known to depend on the isochore class, with L > M > H [29]. This is what we
found here. Although the minimum length of isochores that can be predicted
by our method was 300 kb, we were also able to predict much longer isochores.
The average length for L isochores was 7.2 Mb, whereas the average length
for the H and M isochores was 2 Mb and 4.4 Mb respectively. These lengths
were significantly different (Kruskal-Wallis p-value < 10−12). Figure 3 shows
the relationships between isochore class and gene density. For all chromosomes,
the isochore structure is correlated with the gene density distribution along
the chromosome. The gene density in the H isochores (8.2 genes per Mb) was
higher than the gene density in the L isochores (4.3 genes per Mb), leading to a
significant Wilcoxon test (p-value = 2.10−5). The same difference was observed
when we compared the characteristics of the M isochores (5.6 genes per Mb)
with those of the H (p-value = 4.10−3) and L isochores (p-value = 4.10−2).

5 Discussion

Last year, a large number of genomes were sequenced. This huge amount of data
makes it impossible to analyse patterns in order to provide a biological interpre-
tation ”by hand”. Therefore, mathematical and computational methods have to
be used. Our approach, using HMMs, is a very promising method for analysing
the organisation of genomes. Our study shows that hidden Markov models could
be used to analyse genome organisation. This study was conducted on the chim-
panzee genome but our method can be adapted to other eukaryote genomes. To
model the bell-shapped length distribution of the exons, we have used sums of
a variable number of geometric laws with equal or different parameters. Each
region is represented by a macro-state in the HMM. A key property of this
macro-state approach is that the conditional independence assumptions within
the process are preserved with respect to HMMs. Moreover, we have preferred
to use the Kolmogorov-Smirnov distance in order to obtain a better modelling
of the chimpanzee genes.
The chimpanzee genomes consists of many nested structures (chromosomes, iso-
chores, genes, exons/introns, reading frame). For the analyses of the isochore
organisation of genomes, we have proposed a new method based on HMM, tak-
ing into account genes as a local structure. The different approaches already
developed for isochore prediction ([14], [15], [16], [17], [18]) use only the overall
base composition of the DNA sequence to predict isochores. However, the sta-
tistical characteristics of the G + C content differ in the coding and non-coding
regions of vertebrate genes. To improve the isochore prediction capacity, we have
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(a)

(b)
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(c)

(d)
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(e)

Fig. 3. Distribution of isochores along chimpanzee chromosomes obtained by our
method. The detected H, L and M isochores appear respectively in red, green and
blue. To check the coherence of isochore prediction, each figure is shown with the
distribution of the gene density, and the G + C content along the chromosome. (a)
Chromosomes 1 to 6, (b) chromosomes 7 to 12, (c) chromosomes 13 to 18, (d) chromo-
somes 19 to X, (e) chromosome Y.

introduced the idea of using an HMM that takes into account not only the G+C
content of the DNA sequence, but also several biological properties associated
with the isochore structure of the genome (such as gene density, differences in
the G+C content of different regions of the gene, lengths of exons and introns).
Therefore, three HMMs were adjusted to each isochore class in order to take into
account biological properties associated with H, L and M isochores. In our case,
this supplementary information allowed us to determine the precise boundary
of the isochores and the structure of a region may be easily analyzed. The seg-
mentation in this paper are linked to an isochore structure of the chimpanzee
genome. There was a significant difference between the isochore repartition in
our prediction windows and a random repartition of these windows. Further-
more, there was more coding region in isochore H compared with isochores L
in the two fishes. Thus, our method has clearly confirmed the existence of an
isochore structure in the chimpanzee genome.
In conclusion, The statistical characteristics of the coding and noncoding regions
of vertebrates differ dramatically between the different isochore classes [2]. The
clarification of the isochore structure is a key to understand the organisation
and biological function of the chimpanzee genome and we show here that hidden
Markov models were appropriate for each isochore class. One advantage of the
model presented in this paper is that the number of basic states for each isochore
class (without taking the frame and coding strand into account) in our model is
only 7: first, internal and terminal introns and exons and ”intergenic regions”.
Intergenic region were used to model all non-coding regions of the genome and
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the introns inserted between two coding exons. This small number of states
has made it possible to conduct a complete chimpanzee genome analysis. This
method could be easily adapted to other genomes and could be used to study the
evolution of isochores among the vertebrate genomes. The comparative genomic
analysis have a key role to push our knowledge further in the comprehension of
the structure and function of human genes, to study evolutionary changes among
organisms and help to identify the genes that are conserved among species.
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