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ABSTRACT

Hidden Markov models (HMMs) are effective tools to detect series of statistically
homogeneous structures, but they are not well suited to analyse complex structures.

Numerous methodological difficulties are encountered when using HMMs to segregate
genes from transposons or retroviruses, or to determine the isochore classes of genes.

The aim of this paper is to analyse these methodological difficulties, and to suggest
new tools for the exploration of genome data. We show that HMMs can be used to

analyse complex genes structures with bell-shaped distributed lengths, modelling them

by macro-states. Our data processing method, based on discrimination between macro-
states, allows to reveal several specific characteristics of intronless genes, and a break in

the homogeneity of the initial coding exons. This potential use of markovian models to
help in data exploration seems to have been underestimated until now, and one aim of
our paper is to promote this use of Markov modelling.
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1. Introduction
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The sequencing of the complete human genome led to the knowledge of a se-
quence of three billion pairs of nucleotides [19]. Such amounts of data make it im-
possible to analyse patterns or to provide a biological interpretation analysis unless
one relies on automatic data-processing methods. For twenty years, mathematical
and computational models have been widely developed in this setting. Numerous
methodological efforts have been devoted to multicellular eukaryotes since a large
proportion of their genome has no known function. For example, only 3% of the
human genome is known to code for proteins. Another difficulty is that the sta-
tistical characteristics of the coding region vary dramatically from one species to
the other, and even from one region in a given genome to the other. For example,
vertebrate isochores ([29], [3]) exhibit such a variability in relation to their G + C

frequencies. Thus it is necessary to use different models for different regions if one
seeks to detect patterns in genomes.

A classical way of modelling genomes uses hidden Markov Models (HMMs) ([22],
[18], [23]). To each type of genomic region (exons, introns, etc.), one associates a
state of the hidden process, and the distribution of the stay in a given state, that is,
of the length of a region, is geometric. While this is indeed an acceptable constraint
as far as intergenic regions and introns are concerned, the empirical distributions
of the lengths of exons are clearly bell-shaped ([6], [2], [17]), hence they cannot
be represented by geometrical distributions. Semi-Markov models are one option
to overcome this problem [6]. These models are very versatile, since they allow
to adjust the distribution of the duration of the stay in a given state directly to
the empirical distribution. The trade off is a strong increase in the complexity
of most algorithms implied by the estimation and the use of these models. For
example, the complexities of the main algorithms (forward-backward and Viterbi)
are quadratic in the worst case with respect to the length of the sequence for hidden
semi-Markov chains and linear for HMMs ([6], [27], [15]). This may limit their range
of application as far as the analysis of sequences with long homogeneous regions
is concerned. Another difficulty is the multiplication of the number of parameters
that are needed to describe the empirical distributions of the durations of the states,
and which must be estimated, in addition to usual HMM parameters [27]. Thus
the estimation problem is more difficult for these variable duration HMMs than for
standard HMMs [27]. In other words, semi-Markov models are efficient tools to
detect protein genes, but they are much more complex than HMMs. We suggest to
use HMM for modelling the exon length distribution by sum of geometric laws. To
do this a state representing a region is replaced by a juxtaposition of states with
the same emission probabilities. This juxtaposition of states is called macro-states.

The modelling of a gene may be used to annotated complete genomes, as Genscan
[6] in Ensembl, but also to explore data in order to detect exceptional patterns
and to help in their biological interpretation. Thus, the use of Markov models
for the purpose of data exploration has been underestimated in genome analysis.
This objective requires simple parameters and a relative small amount of computer
resources, to be able to perform numerous analyses of the data. For this purpose,
we show how to use macro-states HMMs models for complete genome analysis.
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2. Materials

Gene sequences were extracted from Hovergen (Homologous Vertebrate Genes
Databa-se) [11] for the human genome. To ensure that the data concerning the
intron/exon organisation was correct, we restricted our analysis to genes of which
the RNA transcripts have been sequenced. To avoid distortion of the statistical
analysis, redundancy was discarded. This procedure yielded a set of 5034 multi-
exon genes and 817 single-exon (that is, intronless) genes. To simplify the model,
UTRs (including their introns) were not separated from intergenic regions. As a
consequence, in the present paper, the word ”intron” means an intron which is
located between two coding exons.

The statistical characteristics of the coding and noncoding regions of vertebrates
differ dramatically between the different isochore classes [4]. The isochore has been
classified as a ”fundamental level of genome organisation” [13] and this concept has
increased our appreciation of the complexity and variability of the composition of
eukaryotic genomes [25]. Many important biological properties have been associated
with the isochore structure of genomes. In particular, the density of genes has been
shown to be higher in H- than in L isochores [24]). Genes in H isochores are more
compact, with a smaller proportion of intronic sequences, and they code for shorter
proteins than the genes in L isochores [12]. The amino-acid content of proteins is
also constrained by the isochore class: amino acids encoded by G + C rich codons
(alanine, arginine . . .) being more frequent in H isochores ([10], [8]). Moreover, the
insertion process of repeated elements depends on the isochore regions. SINE (short-
interspersed nuclear element) sequences, and particularly Alu sequences, tend to be
found in H isochores, whereas LINE (long-interspersed nuclear element) sequences
are preferentially found in L isochores [20]. Thus, we took into account the isochore
organisation of the human genome. Three classes were defined based on the G + C

frequencies at the third codon position (G + C3). The limits were set so that the
three classes contained approximately the same number of genes. This yielded
classes H=[100%, 72%], M=]56%,72%[ and L=[0%,56%], which were used to build
a training set. These classes were roughly the same as those used by other authors
([24], [30]). These sets were used to model the distributions of the lengths of the
exons and the introns, and to analyse the structure of genes.

3. Methods

3.1. Estimation of the parameters

3.1.1. Estimation of emission probabilities:

The DNA sequence is heterogeneous along the genome, but it consists of a
succession of homogenous regions, such as coding and non-coding regions. HMMs
are used to distinguish between these different types of regions.

Exons consist of a succession of codons, and each of the three possible positions
in a codon (1, 2, 3) has characteristic statistical properties. This implies the need
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to divide exons into three states ([7], [5]). HMMs take into account the dependency
between a base and its n preceding neighbours. In this case, the order of the
model is n. For our study, n was taken to be equal to 5, as in the studies of
Borodovsky and Burge ([7], [5]). The emission probabilities of the HMM were
therefore estimated from the frequencies of 6-letter words in the different regions
(intron, initial exon, internal exons and terminal exon) that made up the training
set. Even if introns have not codon structure, the use of 6-letter words allow to
improve the discrimination between coding and no-coding region. Therefore there
is an HMM for each region.

Thus, the emission probabilities of the model were estimated by using the max-
imum likelihood method in order to highlight why some sequences are not correctly
predicted although it is the case for other sequences of the same region. In other
words, we relied on the error of predictions of the HMMs, rather than analyse
somewhat blindly the genomes to do an exploration of the human genome.

3.1.2. Estimation of the structure of the macro-states:

An alternative to the semi-Markov models is suggested to model the bell-shaped
empirical length distributions of the exons. We propose to use sums of a variable
number of geometric laws with equal or different parameters. Thus a ”biological
state” is represented by a HMM and not by a single Markov state. The emission of
probabilities of every state in this HMM are the same. A key property of this macro-
state approach is that the conditional independence assumptions within the process
are preserved with respect to HMMs. Hence, the HMM algorithms to estimate the
parameters and compute the most likely state sequences still apply [15]. The length
distribution of the exons and introns was estimated from the training set (data set
sequences are named x1 . . . xn). Each xi was considered to be the realization of an
independent variable of a given law. We tested the following laws:

• The sum of m geometric laws of same parameter p (i.e. a binomial negative
law):

P [X = k] = Cm
k−1p

m(1− p)k−m (1)

• The sum of two geometric laws with different parameters p1 > p2:

P [X = k] = p1 × p2 ×
(1− p2)k−1 − (1− p1)k−1

p1 − p2
(2)

• The sum of three geometric laws with different parameters p1 < p2 < p3:

P [X = k] =
p1 × p2 × p3

p2 − p3
×

(
(1− p1)k−1 − (1− p3)k−1

p3 − p1
− (1− p2)k−1 − (1− p3)k−1

p3 − p2

)
(3)

To estimate the parameters of the different laws, we minimised the Kolmogorov-
Smirnov distance for each law. The law which fits best with the empirical distribu-
tion is the law with the smallest Kolmogorov-Smirnov distance. However, the clas-
sical Newton or gradient algorithm cannot minimise for the Kolmogorov-Smirnov
distance, because this distance cannot be differentiable. We therefore discretised
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the parameter space with a step of 10−5, and fixed the minimum value. Parameter
estimations were not based on the maximum likelihood, which would have matched
the end of the exon length distribution thus neglecting many small exons (Figure 1
a). Indeed, that it is for a geometrical law or a convolution of geometrical laws, the
parameter p is estimated by the reverse of the mean (E[X] = 1/p) by the method of
the maximum likelihood. The extreme values thus tend to stretch the distribution
towards the large ones. We therefore have preferred to use the Kolmogorov-Smirnov
distance in order to obtain a better modelling of the human gene. Again, in or-
der to provide simple but efficient models, equal transitions between states of a
macro-state were favoured when it was possible.

Fig. 1. (a) The histogram represents the empirical distribution of the length of

the initial exons in a multi-exons gene. The dotted line describes the theoret-

ical distribution, obtained from the Kolmogorov-Smirnov distance. The con-
tinuous line characterises the binomial distribution, obtained by the method

maximum likelihood. (b) The histogram represents the empirical distribution

of the length of the internal exons. The dotted line describes the theoretical
distribution, obtained from the Kolmogorov Smirnov distance.

Thus, a region is represented by a hidden state of the HMM. If the length dis-
tribution of a region is fitted by a sum of geometric laws, the state representing the
region is replaced by a juxtaposition of states with the same emission probabilities,
thus leading to macros-states (Figure 2). The state duration is characterised by
the parameters of the sum of these geometric laws. Various studies ([6], [28], [9])
have shown that the length distribution of the exons depend on their position in
the gene. We took all exon types into account: initial coding exons, internal exons,
terminal exons and single-exon genes.

3.2. Models selection

3.2.1. Algorithm of Models selection

In order to measure the adequacy of a model with a genomic region, the theory
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Fig. 2. Figure representing initial exon HMM.

of HMMs proposes two solutions: the probability of the observed sequence condi-
tioned by the optimal trajectory in the hidden states (Viterbi) or the probability of
the sequence x under the model M , P [x|M ].
The first method neglects the fact that many trajectories are biologically equivalent.
The second method sums the probabilities corresponding to internal structures of
a sequence, which were different. Thus, a model that predicts a bad internal struc-
ture can be associated to a high value of the probability. For example, these two
techniques of selection of models in the context of HMMs were compared:
We consider a HMM of type M1M0 with 2 states, called A and B, and 2 observa-
tions, called 0 and 1. We assume that the transition probabilities from A to B and
from B to A are both t = 9.53643.10−7, and that A emits 0, respectively B emits 1,
with probability p. We note M0.9 the HMM with the probability p = 0.9 and M0.6

the HMM with p = 0.6. We choose the sequence x = 0n1n for given value of n=10,
the aim is to choose M0.9 and M0.6.
If the maximisation of the probability of the sequence was used, it is needed to
compute P (x|M):

P (x|M0.9) = 6.97.10−11 < P (x|M0.6) = 1.27.10−6. (4)

In this case the model M0.6 is better than the model M0.9.
If the probability of the observed sequence conditioned by the optimal trajectory
in the HMM was used, it is needed compute the probability given by the Viterbi
algorithm: P (x/sop,M). For the models M0.9 and M0.6, the optimal sequence is
composed of n states A followed by n states B. In general case (0.5 < p < 1), this
probability is:

P (x|sop,M0.9) = 0.1215 > P (x|sop,M0.6) = 3.65.10−5. (5)

Thus, M0.9 is better than M0.6. This very schematic example shows opposite con-
clusions for the two methods and amphases the fact none of these approaches has
a universal validity. On the other hand, if we consider HMMs that correspond to
a macro-state, the situation is biologically clearer. All trajectories in a macro-state
are biologically equivalent. The method of the optimal trajectories is therefore not
adapted to this problem, while, the situation is well described by the probability of
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the sequence under the model. Thus, the probabilities that are summed correspond
to the same biological structures.

3.2.2. Analysis of the gene structure using HMMs selection

The use of HMMs for classifying sequences raises the question of the evaluation of
their discriminating power. The method chosen here is to split the set of sequences
of known nature into two sets: one for training and one to compare the different
models.
All HMMs (introns, initial exons, internal exons and terminal exons models) are
then compared pairwise for all the sequences in a given type of region (intron,
initial exon, internal exon and terminal exon sequences) of the test set, in order
to identify the model which is the most likely to represent the test sequence. This
gives the discrimination measure D, with

D = P (S/HMM1)/P (S/HMM2), (6)

where S is the sequence being tested, and HMM1, HMM2 are the two models
tested. The computations were realized with the package SARMENT [16]. The
best HMM for most of the sequences in a given region is used to characterise this
region. Each model is finally characterised by the frequency with which it recognises
the sequences. This approach allows to show the types of sequences that were not
well recognised by their corresponding model. Finally, the analysis of the different
types of exons was completed by a correspondence analysis.

4. Results - Discussion

4.1. Inclusion of explicit distributions of the durations of the states in HMMs

In order to model the bell-shaped empirical length distributions of exons (Figure
1), we have used sums of geometric distributions with equal or different parameters.
The length of an exon depends on its position within the gene. Initial and terminal
exons tend to be longer than internal ones (Table 1). The length of introns displays
also a noticeable positional variability. The distributions of the lengths of internal
and terminal introns are relatively similar, but these types of introns are both
smaller than the initial introns (Table 1). As is well known, the lengths of exons
and introns depend on their G + C content [9]. Table 1 shows that the G + C

frequency at the third codon position is negatively correlated with the length of
the introns, i.e., high frequencies correspond to short introns, and vice versa. The
initial exons are longer in G + C rich regions (i.e. displays a significant Wilcoxon
non-parametric test). However, the length of the internal and terminal exons does
not vary with the class of isochores (i.e. displays a non significant Wilcoxon non-
parametric test). The length of the exons displays clearly a bell-shaped pattern,
for the three G + C classes. Since the minimisation of the Kolmogorov-Smirnov
distance yields a good fit with the empirical distribution of the length of the exons
(Figure 1 and Table 1), we used it to model their length distribution by a sum
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Table 1. Length of the exons and of the introns according to their position in
the gene and according to their G + C frequency at third codon position.

Length (bp) Length (bp) Length (bp)
Position in class H in class M in class L

in the gene Mean Median Mean Median Mean Median
Initial coding exon 223 123 176 102 160 87

Internal exon 144 126 143 125 144 120
Terminal exon 244 165 237 145 218 138
Initial intron 4027 3189 4139 3540 5315 4857

Internal intron 1461 958 1767 1310 2850 2433
Terminal intron 1394 884 1764 1282 2819 2415

of geometric laws and estimated the parameters of these laws (see Method for a
comparison with the maximum likelihood approach).

Table 2. Parameters estimation of different laws obtained for initial exons of

class H minimising Kolmogorov-Smirnov distance (K-S).

Laws Parameters p K-S distance
G2(p) 0.0117 0.1084
G3(p) 0.0185 0.16
G4(p) 0.02634 0.1826

G(p1, p2) 0.0055-0.087 0.0447

We define Gn(D1, ..., Dn) as the distribution of the sum of n random variables of
geometric distributions, each with expectation Di and parameter pi = 1/Di. Thus
the expectation of Gn(D1, ..., Dn) is D1 + ... + Dn. When Di = D for every i,
this is called a negative binomial distribution with parameters (n,1/D), which we
denote Gn(1/p). Finally Gn(D) is a geometric distribution with expectation D and
parameter p = 1/D, which we write G(D).
We show here only the results for the modelling of the distributions of the lengths
in the H class. However, the distributions of the lengths in the classes M and
L can be modelled by sums of geometric laws. The estimated distributions are
G2(58.82, 74.07) for initial exons (Figure 1 a), G3(86.21, 181.81, 10) for terminal
exons, G5(26.32) for internal exons (Figure 1 b), G3(351.11) for intronless genes,
and the geometric distribution G(111.11) for initial introns. Other types of introns
are also modelled by a geometrical distribution.
The distributions of the lengths of the single exons (that is, the intronless genes)
exhibit a clear bi-modality (Figure 3). By using the software Blast [1] to search
regions of the human genome similar to our intronless genes, we have found that
many small intronless genes are often repeated along the human genome. The
comparison of all these repeated intronless genes to a database of pseudogenes [21]
revealed that many small intronless genes are actually pseudogenes, i.e., genes that
have lost their function. After the elimination of these pseudogenes, the distribution
of the lengths of the real intronless genes is bell-shaped, like the distributions for
the other types of exons.

4.2. Evaluation of the models

The macro-states used for initial exons (M E1), internal exons (M Eint) and
terminal exons (M Eter) were evaluated. In order to compare the models two-by-
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Fig. 3. (a) The histogram represents the empirical distribution of the length of

the intronless genes. (b) The histogram represents the empirical distribution
of the length of the intronless genes without pseudogenes.
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two, the likelihoods of each sequence of a given type (initial exons, internal exon,
etc.) with respect to the two models were compared and the model with the greater
likelihood is voted for by this sequence (see Method). For example, the sequences
of initial exons vote between the model for the initial exons (M E1) and the model
for the internal exons (M Eint), assuming roughly equal proportions (Figure 4,
Histogram 1). In conclusion, on the sequences of initial exons, the models M E1
and M Eint have similar predictive powers. Figure 4 gives results for the isochore
class H. We stress the following points.

1. Internal exons and terminal exons share similar statistical properties. This is
shown by the similar predictive powers of the models M Eint and M Eter

(Figure 4, Histograms 4 and 6).

2. The initial exons are clearly discriminated from the other exons. This is shown
by the smaller likelihood of the internal exons in M E1 than in M Eint (Fig-
ure 4, Histograms 3 and 5).

3. The modelling of the initial exons is inadequate. This is shown by the small
likelihood of the initial exons in M E1 (Figure 4, Histograms 1 and 2).

The specific statistical characteristics of the initial exons might result from the
existence of signals located at, or covering, the beginning of the genes. To explore
this hypothesis, we have split our HMM for the initial exons into two HMMs. The
first one models the first n nucleotides of the initial exon, and the second the re-
maining part of the initial exon. This new initial exon model is called M E1n.
Pairwise comparisons between the models M E1n for various values of n (Figure 5)
show that the M E180 model yields the better discrimination. This suggests that
the break of homogeneity in the initial exon happens around the 80th base. Finally,
this separation provides a better discrimination between the models of the internal
and initial exons on the one hand and the model of the initial exons on the other
hand (49% to 61% in favour of the M E180 model [Figure 4, histogram 1 and Figure
5, histogram 7]) and from the internal exons (89% to 92% in favor of M Eint, not
shown in the Figure). Similar results were found for the terminal exons.

The break in the homogeneity of the first exon could be explained by the pres-
ence of a signal peptide. The first exons which contain a signal peptide are better
recognised by the first HMM of the M E180 model than by the second one in 75%
of the cases. These results were also compared with those obtained by SignalP [26].
The initial exons which, according to SignalP, contain a signal peptide, were more
accurately recognised by the M E180 model than by the internal exon model in
70% of the cases. When SignalP does not predict a signal peptide, the M E180 and
the internal exon models yield similar results.
The significance of the modelling of isochores is highlighted by the results described
in the previous paragraph, which show the effect of the distributions of the lengths
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Fig. 4. Models learned from different sequences (initial, internal and terminal

exons) were compared pairwise using the sequences used to determine the best

predictions. For instance, in histogram 1, the likelihood of each first exon was
computed using models learnt on E1 and Eint. The black bar represents the

percentage of first exons having a higher likelihood for the first exon model,

and the grey bar those with a higher liklihood for the second exon model.
Histograms 1-2: The models E1, Eint and ET have same predictive power

on initial exons. Histograms 3-5: The models Eint and ET provide a good

prediction of the internal and terminal exons compared to the E1 model (82%
and 75%, respectively). Histograms 4-6: The models Eint and ET have the

same predictive power for initial and terminal exons.
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Fig. 5. The models learned from different sequences (initial, internal and ter-
minal exons) were compared pairwise to the initial exons to identify the best
predictions. The IE80 model provides a better prediction of initial exons than

any other model tested.

12



of exons and introns. This claim was confirmed by our study of the influence of
the isochore class on the words frequencies, in the different types of regions. For
every type of exons (i.e., initial, internal and terminal), the model trained with a
specific isochore class performed better on this class than the others (Figure 6).
The situation as concerns the classes of introns is somewhat different. The introns
from classes H and M are better predicted by our HMMs H and M , respectively
(Figure 7, Histograms 1 to 4), whereas the three models H, L, and M , are more or
less equivalent for the introns of class L (Figure 7, Histograms 5, 6). This analysis
clearly reveals some major statistical differences between the three isochore classes,
and the importance of taking into account this heterogeneity of the genome in a
context of prediction of genes. The poor recognition of introns in L isochores by
all these models might result from an over-simplistic modelling. We point out that
repeated elements, particularly LINEs, were not taken into account. Their higher
frequency in the isochores of class L could explain the response of the model.

Fig. 6. The models learned from different sequences (internal exons of classes
H, M and L) were compared pairwise on the same sequences to determine the

best predictions.

Many other data exploration tools exist. Multivariate analysis is on among
the most popular methods that uses exactly the same data as HMMs. Indeed,
if sequences are represented by frequencies of 6-bases words (see method), then a
correspondence analysis will take into account exactly the same data as the one
which is used to estimate the parameters of an HMM (see method). Figures 8 and
9 show the general patterns found by correspondence analysis. The frequencies of
words of length 6 in the exons and the introns are neatly divided into four groups: H

exons, M exons, L exons, and introns (Figure 8). When the reading frames are also
taken into account (Figure 9), they are separated on the first factor, showing that
the statistical differences between the codon positions represent the main statistical
pattern in coding sequences.
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Fig. 7. The models learned from different sequences (introns of classes H, M
and L) were compared pairwise on the same sequences to determine the best

predictions.

5. Conclusion

The use of Markov models for the purpose of data exploration has been under-
estimated in genome analysis. This study is the first large scale exploration of the
use of macro-states. Our approach allows to discriminate most genomic regions and
is based on a selection among HMM models using macro-states. Macro-states al-
low to model distributions of lengths which are not geometric. Our strategy yields
a comprehensive description of the human genome that highlights the following
features:

1. The particular structure of intronless genes revealed the large number of errors
of annotation in the databases for these genes: most small intronless genes
are actual pseudogenes.

2. The great statistical differences between the three classes of isochores, and
therefore the importance of taking into account this heterogeneity of the
genome for the purpose of gene prediction. Initial exons exons are longer
in the H class (G + C rich). Introns are longer in the L class (G + C poor).

3. Initial exons exhibit a very specific pattern, due to the fact that half of them
contain a peptide signal. An average duration of stay in the first state of
M E180 of 80 bases long was observed, this is consistent with biological knowl-
edge about such signals, which are 45 to 90 bases long. Initial exons without a
peptide signal, and the second parts of the initial exons with a peptide signal,
are statistically similar to internal exons and terminal exons, respectively.

Macro-states HMMs models are based on exactly the same data as. Multivariate
analysis but allows to identified the general patterns with a much lower cost in CPU
resources. This is very close to the principle of some ”old” gene prediction methods
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Fig. 8. Correspondence analysis of the emission probabilities of the dif-

ferent states models in reading frame 0. The first axis (36.2% of to-
tal variability) represents the G + C gradient. Eint.H.0=internal exon

model of class H and reading frame 0; Eint.M.0=internal exon model

of class M and reading frame 0; Eint.L.0=internal exon model of class
L and reading frame 0; ETt.H.0=terminal exon model of class H and

reading frame 0; ETt.M.0=terminal exon model of class M and read-

ing frame 0; ETt.L.0=terminal exon model of class L and reading
frame 0; First.E.H.0=initial exon model of class H and reading frame

0; first.E.H.0=initial exon model of class M and reading frame 0;

first.E.H.0=initial exon model of class L and reading frame 0; IN.H=intron
model of class H; IN.M=intron model of class M ; IN.L=intron model of class

L
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Fig. 9. Correspondence analysis of the emission probabilities of the different
state models. The first axis (59.5% of the total variability) represents the

reading frame gradient.

(see RECSTA [14]). However, the markovian approach has important advantages:
it is not necessary to know the limits of the regions before the analysis, and more
importantly, the model is more versatile; hence, new hypotheses can be explicitly
introduced, as was done for the signal peptide.
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